bullet Entrance Exams > ISAT > Syllabus

ISAT Syllabus

Share Facebook Twitter SMS

ISAT Syllabus

PHYSICS

(Mechanics)

  1. Units and Measurements : The international system of units, Measurement of Length, mass and time, Accuracy, precision of instruments and errors in measurement, Significant figures, Dimension of physical quantities, Dimensional formulae and equations, Dimensional analysis and its applications.
  2. Motion in a straight line : Position, path length and displacement, Average velocity and speed, Instantaneous velocity and speed, Acceleration, Kinematic equations for uniformly accelerated motion, Relative velocity
  3. Motion in a plane : Scalars and Vectors, Multiplication of vectors by real numbers, Addition and Subtraction of vectors- graphical method, Resolution of vectors, Vector addition – analytical method, Motion in a plane, Motion in a plane with constant acceleration, Relative velocity in two dimensions, projectile motion, Uniform circular motion.
  4. Laws of motion : The law of inertia, Newton’s first, second and third law of motion, Conservation of momentum, Equilibrium of particle, Common forces in mechanics, Circular motion
  5. Work, Power and Energy : The work energy theorem, Kinetic and Potential energy, Work-Energy theorem for variable force, The conservation of mechanical energy, Power, The potential energy of a spring, Collisions
  6. System of particles and rotational motion : Centre of mass, Motion of centre of mass, Linear momentum of a system of particles, vector product of two vectors, Angular velocity and linear velocity relations, Torque and angular momentum, Equilibrium of a rigid body, Moment of Inertia, Theorem of perpendicular and parallel axes, Kinematics and Dynamics of rotational motion about a fixed axis, Angular momentum in case of rotation about a fixed axis, Rolling motion
  7. Gravitation : Kepler’s laws, Universal law of gravitation, gravitation constant, Acceleration due to gravity of the earth, Acceleration due to gravity below and above the surface of earth, Gravitational potential energy

Electromagnetism

  1. Electric charges and Fields : Electric charges, Conductors and Insulators, Basic properties of electric charge, Coulomb’s law, Force between multiple charges, Electric field and flux, Electric dipole, Continuous charge distribution, Gauss’s law and its applications
  2. Electrostatic Potential and capacitance : Electrostatic potential, Potential due to a point charge and systems of charges, Potential due to an electric dipole, Equipotential surfaces, Potential energy in an external field, Electrostatics of conductors, Dielectric and polarization, Capacitors and capacitance, The parallel plate capacitor, Combination of capacitors, Energy stored in a capacitor
  3. Current Electricity : Electric current, Electric currents in conductors, Ohm’s law, Drift of electrons and origin of resistivity, Resistivity and its temperature dependence, Electrical energy and power, Combination of resistors (Series and Parallel) , Cells, emf, internal resistance, Cells in series and parallel, Kirchoffs laws, Wheatstone bridge, Meter bridge, and Potentiometer
  4. Moving charges and Magnetism : Magnetic force, Motion in a magnetic field, Motion in a combined electric and magnetic fields, Magnetic field due to a current element and Biot-Savart law, Magnetic field on the axis of a circular current loop, Ampere’s circuital law, The solenoid and toroid, Force between, two parallel currents, Torque and current loop and Magnetic dipole, The moving coil Galvanometer
  5. Magnetism and Matter : The bar magnet, The earth’s magnetism, Magnetic properties of materials, Permanent magnets and electromagnets
  6. Electromagnetic induction : Magnetic flux, Faraday’s law of induction, Lenz’s law and conservation of energy, Motional electromagnetic force, Energy consideration : A quantitative study, Inductance and AC Generator
  7. Alternating current : AC Voltage applied to a resistor, an inductor, a capacitor, Ac Voltage applied to a series LCR circuit, Power in AC Circuit, LC Oscillations, Transformers

Optics and Waves

  1. Ray Optics and Optical Instruments : Reflection of light by spherical mirrors, refraction, Total internal reflection, Refraction at Spherical surfaces and by Lenses, Refraction through a Prism, Dispersion by a prism, Some natural phenomenon due to a sunlight, Optical instruments,
  2. Wave Optics : Huygens Principle, Refraction and reflection of plane waves using Huygens Principle, Coherent and Incoherent addition of waves, Interference of light waves and Young’s experiment, Diffraction, Polarisation
  3. Oscillations : Periodic and oscillatory motions, Simple harmonic motion and uniform circular motion, Velocity and acceleration in simple harmonic motion, Force and energy in simple harmonic motion, Damped SHM and forced oscillations and resonance
  4. Waves : Transverse and longitudinal waves, Displacement and speed of a traveling wave, Principle of superposition of waves, Reflection of waves, Beats, Doppler effect
  5. Dual nature of radiation and matter : Photoelectric effect, Wave theory of light and particle nature of light, Wave nature of matter

Properties of Matter, Thermodynamics

Mechanical properties of solids : Elastic behavior of solids, Stress and strain, Hooke’s law, Applications of elastic behavior of materials

Mechanical properties of fluids : Pressure, Streamline flow, Bernoulli’s principle, Viscosity, Reynold’s number, Surface tension
Thermal properties of matter : Temperature and heat, Measurement of Temperature, Ideal-gas equation and absolute temperature, Thermal expansion, Specific heat capacity, Calorimetry, Change of state, Heat Transfer, Newton’s law of cooling
Thermodynamics : Thermal equilibrium, Zeroth law of thermodynamics, Heat, Internal energy and work, First law of thermodynamics, Specific heat capacity, Thermodynamic state variables and equation of state, Thermodynamic processes, Heat engines, Refrigerators and heat pumps, Second law of thermodynamics, Reversible and irreversible processes, Carnot engine
Kinetic theory : Molecular nature of matter, Behavior of gases, Kinetic theory of an ideal gas, Law of equipartition of energy, Mean free path

    Laboratory related questions

    1. Vernier calipers, Screw gauge measurements, Traveling microscopes, Spectrometers, Meter bridges, Potentiometers and Wheatstone bridge, Minimum deviation measurements, Refraction and reflection of light experiments etc, Galvanometer, Ammeter, Voltmeter

    CHEMISTRY

    Inorganic Chemistry

    Basic Concepts of Chemistry

    Particulate nature of matter, laws of chemical combination, Dalton’s atomic theory: concept of elements, atoms and molecules. Atomic and molecular masses, molecular formula, stoichiometry. Structure of Atom

    Atomic number, isotopes and isobars. Different atomic models and limitations, shells and sub-shells, dual nature of matter and light, de Broglie’s relationship, Heisenberg uncertainty principle, orbitals, quantum numbers, shapes of s, p, and d orbitals, Aufbau principle, Pauli exclusion principle and Hund’s rule, electronic configuration of atoms, stability of half filled and completely filled orbitals.

    Classification of Elements and Periodicity in Properties Periodic table, periodic trends in properties of elements

    Chemical Bonding and Molecular Structure

    Valence electrons, ionic bond, covalent bond, bond parameters, Lewis structure, polar character of covalent bond, covalent character of ionic bond, valence bond theory, resonance, geometry of covalent molecules, VSEPR theory, hybridization involving s, p and d orbitals and shapes of some simple molecules, molecular orbital theory of homonuclear diatomic molecules Hydrogen

    Occurrence, isotopes, preparation, properties and uses of hydrogen and its compounds. s-Block Elements (Group 1 and Group 2 elements)

    Electronic configuration, occurrence, anomalous properties of the first element of each group, diagonal relationship, trends in the variation of properties and in chemical reactivity, uses. Preparation and properties of compounds of Na, Ca, Mg and their biological importance.

    p-Block Elements

    General Introduction to p-Block Elements Elements of Group 13, 14 15,16, 17and 18

    Electronic configuration, occurrence, variation of properties, oxidation states, trends in chemical reactivity, anomalous properties of first element of the group. Chemical and physical properties of boron, aluminium, carbon, silicon, nitrogen, phosphorous, oxygen, sulphur, halogens and important compounds of the elements.

    d and f Block Elements

    Electronic configuration, occurrence and characteristics of transition metals, general trends in properties of the first row transition metals.

    General Principles and Processes of Isolation of Elements

    Concentration, oxidation, reduction electrolytic method and refining; occurrence and principles of extraction of aluminium, copper, zinc and iron.

    Lanthanides: Electronic configuration, oxidation states, chemical reactivity and lanthanide contraction.

    Actinides: Electronic configuration, oxidation states.

    Coordination compounds: Ligands, coordination number, colour, magnetic properties and shapes, IUPAC nomenclature of mononuclear coordination compounds, bonding; isomerism, importance of coordination compounds.

    Physical Chemistry

    States of Matter

    Three states of matter, intermolecular interactions, type of bonding, melting and boiling points, molecular, ionic, covalent and metallic solids, amorphous and crystalline solids, unit cell in two dimensional and three dimensional lattices, calculation of density of unit cell, packing in solids, voids, number of atoms per unit cell in a cubic unit cell, point defects, electrical and magnetic properties. Boyle’s law, Charles’ law, Gay Lussac’s law, Avogadro’s law, ideal behaviour, empirical derivation of gas equation, Avogadro’s number, ideal gas equation, deviation from ideal behaviour, liquefaction of gases, critical temperature. Liquid State.

    Solutions

    Types of solutions, solubility of gases in liquids, solid solutions, colligative properties -relative lowering of vapour pressure, elevation of boiling point, depression of freezing point, osmotic pressure, determination of molecular masses

    Thermodynamics

    Systems, surroundings, work, heat, energy, extensive and intensive properties, state functions. First law of thermodynamics – internal energy and enthalpy, heat capacity and specific heat, measurement of AU and AH, Hess’s law of constant heat summation, enthalpy of: bond dissociation, combustion, formation, atomization, sublimation, phase transition, ionization, and dilution. Entropy as a state function, free energy change for spontaneous and nonspontaneous process, equilibrium.

    Equilibrium

    Equilibrium in physical and chemical processes, dynamic nature of equilibrium, law of mass action, equilibrium constant, factors affecting equilibrium – Le Chatelier’s principle; ionic equilibrium -ionization of acids and bases, strong and weak electrolytes, degree of ionization, concept of pH. Hydrolysis of salts, buffer solutions, solubility product, common ion effect.

    Redox Reactions

    Redox reactions, oxidation number, balancing redox reactions, applications of redox reactions.

    Electrochemistry

    Conductance in electrolytic solutions, specific and molar conductivity variations of conductivity with concentration, Kohlrausch’s Law, electrolysis and laws of electrolysis, dry cell – electrolytic cells and Galvanic cells; lead accumulator, EMF of a cell, standard electrode potential, Nernst equation and its application to chemical cells, fuel cells; corrosion.

    Chemical Kinetics

    Rate of a reaction, factors affecting rates of reaction, order and molecularity of a reaction; rate law and specific rate constant, integrated rate equations and half life (only for zero and first order reactions); concept of collision theory.

    Surface Chemistry

    Physisorption and chemisorption; factors affecting adsorption of gases on solids; catalysis: homogenous and heterogeneous, activity and selectivity: enzyme catalysis; colloidal state: distinction between true solutions, colloids and suspensions, Tyndall effect, Brownian movement, electrophoresis, coagulation; emulsions – types of emulsions.

    Nuclear chemistry: Radioactivity: isotopes and isobars; Properties of a, P, and y rays; Kinetics of radioactive decay (decay series excluded), carbon dating; Stability of nuclei with respect to proton-neutron ratio; fission and fusion reactions.

    Organic Chemistry

    Basic Principles and Techniques

    Methods of purification, qualitative and quantitative analysis, classification and IUPAC nomenclature of organic compounds. Electronic displacements in a covalent bond: inductive effect, electromeric effect, resonance and hyper conjugation. Homolytic and heterolytic fission of a covalent bond: free radicals, carbocations, carbanions; electrophiles and nucleophiles, types of organic reactions.

    Hydrocarbons

    Alkanes, alkenes and alkynes: Nomenclature, isomerism, physical properties, methods of preparation. Conformations (ethane only), structure of double bond (ethene), geometrical isomerism, structure of triple bond (ethyne), chemical reactions.

    Aromatic hydrocarbons: Introduction, IUPAC nomenclature; Benzene: resonance, aromaticity; chemical properties: mechanism of electrophilic substitution, influence of functional group in mono-substituted benzene.

    Haloalkanes and haloarenes: Nomenclature, nature of C-X bond, physical and chemical properties, mechanism of substitution reactions, environmental effects of compounds

    Alcohols, Phenols and Ethers

    Nomenclature, methods of preparation, physical and chemical properties, uses. Identification of primary, secondary and tertiary alcohols, mechanism of dehydration. Acidic nature of phenol, electrophilic substitution reactions.

    Aldehydes, Ketones and Carboxylic Acids Aldehydes and Ketones: Nomenclature, nature of carbonyl group, methods of preparation, physical and chemical properties. Mechanism of nucleophilic addition, reactivity of alpha hydrogen in aldehydes, acidic nature of carboxylic acids.

    Organic Compounds Containing Nitrogen: Amines, cyanides, isocyanaides and diazonium salts

    Other topics of importance

    Environmental Chemistry

    Environmental pollution : Air, water and soil pollution, green chemistry, control of environmental pollution.

    Biomolecules ;Carbohydrates, proteins, vitamins, Nucleic Acids Polymers

    Natural and synthetic polymers, methods of polymerization, copolymerization. Polymers like polythene, nylon, polyesters, bakelite, rubber.

    Chemistry in Everyday Life ; Chemicals in medicines, chemicals in food, cleansing agents and action.

    MATHEMATICS

    SETS, RELATIONS AND FUNCTIONS:

    Sets and their representation; Union, intersection and complement of sets and their algebraic properties; Power set; Relation, Types of relations, equivalence relations, functions;. one-one, into and onto functions, composition of functions.

    COMPLEX NUMBERS AND QUADRATIC EQUATIONS:

    Complex numbers as ordered pairs of reals, Representation of complex numbers in the form a+ib and their representation in a plane, Argand diagram, algebra of complex numbers, modulus and argument (or amplitude) of a complex number, square root of a complex number, triangle inequality, Quadratic equations in real and complex number system and their solutions. Relation between roots and co-efficients, nature of roots, formation of quadratic equations with given roots.

    PERMUTATIONS AND COMBINATIONS:

    Fundamental principle of counting, permutation as an arrangement and combination as selection, Meaning of P (n,r) and C (n,r), simple applications.

    MATHEMATICAL INDUCTION:

    Principle of Mathematical Induction and its simple applications.

    BINOMIAL THEOREM AND ITS SIMPLE APPLICATIONS:

    Binomial theorem for a positive integral index, general term and middle term, properties of Binomial coefficients and simple applications.

    SEQUENCES AND SERIES:

    Arithmetic and Geometric progressions, insertion of arithmetic, geometric means between two given numbers. Relation between A.M. and G.M. Sum upto n terms of special series: Sn, Sn2, Sn3. Arithmetico – Geometric progression.

    LIMIT, CONTINUITY AND DIFFERENTIABILITY:

    Real – valued functions, algebra of functions, polynomials, rational, trigonometric, logarithmic and exponential functions, inverse functions. Graphs of simple functions. Limits, continuity and differentiability. Differentiation of the sum, difference, product and quotient of two functions. Differentiation of trigonometric, inverse trigonometric, logarithmic, exponential, composite and implicit functions; derivatives of order up to two. Rolle’s and Lagrange’s Mean Value Theorems. Applications of derivatives: Rate of change of quantities, monotonic – increasing and decreasing functions, Maxima and minima of functions of one variable, tangents and normals.

    INTEGRAL CALCULUS:

    Integral as an anti – derivative. Fundamental integrals involving algebraic, trigonometric, exponential and logarithmic functions. Integration by substitution, by parts   and   by   partial   fractions.   Integration   using   trigonometric   identities.

    Integral as limit of a sum. Fundamental Theorem of Calculus. Properties of definite integrals. Evaluation of definite integrals, determining areas of the regions bounded by simple curves in standard form.

    Differential Equations:

    Ordinary differential equations, their order and degree. Formation of differential equations. Solution of differential equations by the method of separation of variables, solution of homogeneous and linear differential equations.

    CO-ORDINATE GEOMETRY:

    Cartesian system of rectangular co-ordinates in a plane, distance formula, section formula, locus and its equation, translation of axes, slope of a line, parallel and perpendicular lines, intercepts of a line on the coordinate axes.

    Straight lines

    Various forms of equations of a line, intersection of lines, angles between two lines, conditions for concurrence of three lines, distance of a point from a line, equations of internal and external bisectors of angles between two lines, coordinates of centroid, orthocentre and circumcentre of a triangle, equation of family of lines passing through the point of intersection of two lines.

    Circles, conic sections

    Standard form of equation of a circle, general form of the equation of a circle, its radius and centre, equation of a circle when the end points of a diameter are given, points of intersection of a line and a circle with the centre at the origin and condition for a line to be tangent to a circle, equation of the tangent. Sections of cones, equations of conic sections (parabola, ellipse and hyperbola) in standard forms, condition for y = mx + c to be a tangent and point (s) of tangency.

    Three Dimensional Geometry:

    Coordinates of a point in space, distance between two points, section formula, direction ratios and direction cosines, angle between two intersecting lines. Skew lines, the shortest distance between them and its equation. Equations of a line and a plane in different forms, intersection of a line and a plane, coplanar lines.

    MATRICES AND DETERMINANTS:

    Matrices, algebra of matrices, types of matrices, determinants and matrices of order two and three. Properties of determinants, evaluation of determinants, area of triangles using determinants. Adjoint and evaluation of inverse of a square matrix using determinants and elementary transformations, Test of consistency and solution of simultaneous linear equations in two or three variables using determinants and matrices.

    Vector Algebra:

    Vectors and scalars, addition of vectors, components of a vector in two dimensions and three dimensional space, scalar and vector products, scalar and vector triple product.

    Trigonometry:

    Trigonometrical identities and equations. Trigonometrical functions. Inverse trigonometrical functions and their properties. Heights and Distances.

    STATISTICS AND PROBABILITY:

    Measures of Dispersion:

    Calculation of mean, median, mode of grouped and ungrouped data. Calculation of standard deviation, variance and mean deviation for grouped and ungrouped data.

    Probability:

    Probability of an event, addition and multiplication theorems of probability, Baye’s theorem, probability distribution of a random variate, Bernoulli trials and Binomial distribution.


    Tags: isro isat syllabus

    More on ISAT

    Entrance Exams

    ACDS 2013 | AFMC 2013 | AIBE 2013 | AICET 2013 | AIEEA 2013 | AIEEE 2013 | AIIMS 2013 | AIMS 2013 | AIPGMEE 2013 | AIPMT 2013 | AIJS 2013 | AIOAT 2013 | AMRITA 2013 | AMU 2013 | APTET 2013 | ARCHITECTURE 2013 | ARMPMC UP 2013 | ASSAM JAT 2013 | ASSO CET 2013 | ATMA 2013 | BANASTHALI 2013 | BCECE 2013 | BEEE 2013 | BHU 2013 | BINC 2013 | BITSAT 2013 | BVP EEE 2013 | BVPEEE 2013 | CA CPT 2013 | CAT 2013 | CATE 2013 | CBEE 2013 | CEED 2013 | CEEP 2013 | CENTAC JET 2013 | CET 2013 | CG PET 2013 | CIPET JEE 2013 | CLAT 2013 | CMAT 2013 | COMEDK 2013 | COMEDK PGET 2013 | CPT 2013 | CSAT 2013 | CTET 2013 | CUCET 2013 | CUSAT 2013 | DAIICT 2013 | DNB CET 2013 | DTU 2013 | DUPGMET 2013 | DUMET 2013 | EAMCET 2013 | EDCET 2013 | ENAT 2013 | ENGINEERING 2013 | ESE 2013 | G2CET 2013 | GAT 2013 | GATE 2013 | GBTU 2013 | GCET 2013 | GMAT 2013 | GPAT 2013 | GPT 2013 | GRE 2013 | GUJCET 2013 | HPMT 2013 | HP CPMT 2013 | HSEE 2013 | IAS 2013 | IBSAT 2013 | ICET 2013 | ICFAI 2013 | ICWA 2013 | IELTS 2013 | IFS 2013 | IIEST 2013 | IIFT 2013 | IISC 2013 | IISER 2013 | IIT JAM 2013 | IITJEE 2013 | ILI CAT 2013 | ILSAT 2013 | IPCC 2013 | IPS 2013 | IPUCET 2013 | ISAT 2013 | ISI 2013 | IUET 2013 | JK BPEE CET 2013 | JCECE 2013 | JEE 2013 | JEST 2013 | JET 2013 | JET ABM 2013 | JIIT 2013 | JIPMER 2013 | JKCET 2013 | JMET 2013 | JMI 2013 | JSSU UGET 2013 | KAIET 2013 | KCET 2013 | KEAM 2013 | KEE 2013 | KERALA CEE 2013 | KIITEE 2013 | KLE PGAIET 2013 | KLEE 2013 | KLEU AIET 2013 | KLSAT 2013 | KRLMPCA 2013 | LAW 2013 | LAWCET 2013 | LNMIIT 2013 | LSAT 2013 | MAH CET 2013 | MAHER 2013 | MANAGEMENT 2013 | MANIPAL UGET 2013 | MAT 2013 | MBA CET 2013 | MBA 2013 | MCA 2013 | MEDICAL 2013 | MGIMS 2013 | MGM CET 2013 | MHT CET 2013 | MMUCET 2013 | MP DMAT 2013 | MP PET 2013 | NAT 2013 | NATA 2013 | NCHMCT JEE 2013 | NDA 2013 | HTTP: WWW.ICBSE.COM NEET 2013 | NEIGRIHMS 2013 | NEE 2013 | NEST 2013 | NET 2013 | NIFT 2013 | NIMCET 2013 | NLU 2013 | NMAT 2013 | NUPGET 2013 | OCET 2013 | OPENDEN 2013 | OPENMAT 2013 | OJEE 2013 | PECET 2013 | PGCET 2013 | PGD CET 2013 | PGECET 2013 | PGM CET 2013 | PGMEE 2013 | PMEE 2013 | PMET 2013 | POLYTECHNIC 2013 | PSTET 2013 | PTET 2013 | PUCET 2013 | RPET 2013 | RPMT 2013 | RTET 2013 | RULET 2013 | SAAT 2013 | SAT 2013 | SCRA 2013 | SET 2013 | SLEEE 2013 | SLET 2013 | SNAP 2013 | SRMEEE 2013 | STET 2013 | TANCET 2013 | TET 2013 | THAPAR 2013 | TMISAT 2013 | TNEA 2013 | TNPCEE 2013 | TOEFL 2013 | TRIPURA JEE 2013 | UGC NET 2013 | UJET 2013 | UKSEE 2013 | UP CPMT 2013 | UPCAT DENTAL 2013 | UPCMET 2013 | UPCPMT 2013 | UPGMEE 2013 | UPSC 2013 | UPSEE 2013 | UTTARAKHAND CPMEE 2013 | VEE 2013 | VITEEE 2013 | VMU AICEE 2013 | WBJEE 2013 | XAT 2013 |

    Tags: isro isat syllabus